44 research outputs found

    Incorporation of H_2 in vitreous silica, qualitative and quantitative determination from Raman and infrared spectroscopy

    Full text link
    Incorporation mechanisms of H_2 in silica glass were studied with Raman and infrared (IR) microspectroscopy. Hydrogenated samples were prepared at temperatures between 800 deg C and 955 deg C at 2 kbar total pressure. Hydrogen fugacities (f_{H_2}) were controlled using the double capsule technique with the iron-w\"ustite (IW) buffer assemblage generating f_{H_2} of 1290-1370 bars corresponding to H_2 partial pressures (P_{H_2}) of 960-975 bars. We found that silica glass hydrogenated under such conditions contains molecular hydrogen (H_2) in addition to SiH and SiOH groups. H_2 molecules dissolved in the quenched glasses introduce a band at 4136 cm^{-1} in the Raman spectra which in comparison to that of gaseous H_2 is wider and is shifted to lower frequency. IR spectra of hydrogenated samples contain a band at 4138 cm^{-1} which we assign to the stretching vibration of H_2 molecules located in non-centrosymmetric sites. The Raman and IR spectra indicate that the dissolved H_2 molecules interact with the silicate network. We suggest that the H_2 band is the envelope of at least three components due to the occupation of at least three different interstitial sites by H_2 molecules. Both, Raman and IR spectra of hydrogenated glasses contain bands at ~2255 cm^{-1} which may be due to the vibration of SiH groups

    The carbon dioxide solubility in alkali basalts: an experimental study

    Get PDF
    International audienceExperiments were conducted to determine CO2 solubilities in alkali basalts from Vesuvius, Etna and Stromboli volcanoes. The basaltic melts were equilibrated with nearly pure CO2 at 1,200°C under oxidizing conditions and at pressures ranging from 269 to 2,060 bars. CO2 solubility was determined by FTIR measurements. The results show that alkalis have a strong effect on the CO2 solubility and confirm and refine the relationship between the compositional parameter Π devised by Dixon (Am Mineral 82:368-378, 1997) and the CO2 solubility

    The effect of water and fO2 on the ferric–ferrous ratio of silicic melts

    No full text
    New experiments on the effect of dissolved water on the ferric–ferrous ratio of silicic melts have been performed at 200 MPa, between 800°C and 1000°C and for fO2 between NNO−1.35 and NNO+6.6. Water-saturated conditions were investigated. Compositions studied include six metaluminous synthetic melts, with FeOtot progressively increasing from 0.47 to 4.25 wt.%, two natural obsidian glasses (one peraluminous and the other peralkaline) and a synthetic rhyolitic glass having the composition of the matrix glass of the June 15, 1991 Pinatubo dacite. Ferrous iron was analyzed by titration and FeOtot by electron microprobe. Variation of quench rate was found to have no detectable effect on the ferric–ferrous ratio of the hydrous silicic melts investigated. At NNO, no dependence of the ferric–ferrous ratio with temperature is observed. At fO2NNO+1, the experimental ferric–ferrous ratios are equal or lower than calculated. The peralkaline samples show the same type of behaviour. A non-linear relationship between XFe2O3/XFeO and fO2 implies that a term for dissolved water must be added to the KC equation if it is to be applied to the calculation of ferric–ferrous ratios of hydrous silicic melts. Above NNO+1, the ferric–ferrous ratio is essentially controlled by the anhydrous melt composition and fO2. However, differences exist between measured and calculated ferric–ferrous ratios of silicic melts that are not all attributable to the effect of dissolved water. Additional work is needed to describe more precisely the dependence of the ferric–ferrous ratio on anhydrous melt composition. The oxidizing effect of water is restricted to relatively reduced magmatic liquids. In oxidized calk-alkaline magma series, the presence of dissolved water will not largely influence melt ferric–ferrous ratios

    Hydrothermal synthesis and characterization of dioctahedral smectites: A montmorillonites series

    No full text
    International audienceThe aim of this study is to synthesize and finely characterize montmorillonite samples, dioctahedral smectites without tetrahedral charges (structural formulae Nax(Al(2 − x)Mgx)Si4O10(OH)2), to allow their use as reference samples in clay science. The montmorillonites synthesis under hydrothermal conditions at different pressures and with various layer charge deficit has been attempted. The temperature was fixed at 320 °C, the pressure parameter values were 20 MPa, 80 MPa, 120 MPa and 200 MPa. The Mg content varied from 0.25 to 0.60 per half unit cell. The reaction products have been characterized with multi-technique analyses (ICP-AES, EMP, CEC, XRD, FTIR, NMR and TGA). Montmorillonite phase was only produced at 120 and 200 MPa. At 20 and 80 MPa, the results suggest that a 0.33 and 0.16-tetrahedral charge deficit exist in the formed samples. Moreover, the octahedral occupancies are higher than two (2.15 and 2.07 at 20 and 80 MPa respectively). In these experimental conditions, the synthetic smectites are mixtures between montmorillonite, beidellite and saponite. At 120 MPa and for a Mg content of 0.25 or higher than 0.33, the synthetic products were also mixtures of smectites. Tetrahedral charge deficits of 0.11, 0.11 and 0.15 were found for Mg contents of 0.25, 0.50 and 0.60 respectively. The octahedral occupancy was also higher than 2.00. A montmorillonite phase with only octahedral charges and an octahedral occupancy near 2.00 was synthesized for a Mg content of 0.33 and at pressures equal to or higher than 120 MPa. This low charge reference smectite shows a very low amount of accessory minerals and an octahedral charge deficit only created by the presence of magnesium in the structure. This montmorillonite can be compared structurally to the most studied natural one: the montmorillonite SWy-2 from Wyoming

    The H2O solubility of alkali basaltic melts: an experimental study

    Get PDF
    International audienceExperiments were conducted to determine the water solubility of alkali basalts from Etna, Stromboli and Vesuvius volcanoes, Italy. The basaltic melts were equilibrated at 1,200°C with pure water, under oxidized conditions, and at pressures ranging from 163 to 3,842 bars. Our results show that at pressures above 1 kbar, alkali basalts dissolve more water than typical mid-ocean ridge basalts (MORB). Combination of our data with those from previous studies allows the following simple empirical model for the water solubility of basalts of varying alkalinity and fO2 to be derived: {\text{H}}_{ 2} {\text{O}}\left( {{\text{wt}}\% } \right) = {\text{ H}}_{ 2} {\text{O}}_{\text{MORB}} \left( {{\text{wt}}\% } \right) + \left( {5.84 \times 10^{ - 5} *{\text{P}} - 2.29 \times 10^{ - 2} } \right) \times \left( {{\text{Na}}_{2} {\text{O}} + {\text{K}}_{2} {\text{O}}} \right)\left( {{\text{wt}}\% } \right) + 4.67 \times 10^{ - 2} \times \Updelta {\text{NNO}} - 2.29 \times 10^{ - 1} where H2OMORB is the water solubility at the calculated P, using the model of Dixon et al. (1995). This equation reproduces the existing database on water solubilities in basaltic melts to within 5%. Interpretation of the speciation data in the context of the glass transition theory shows that water speciation in basalt melts is severely modified during quench. At magmatic temperatures, more than 90% of dissolved water forms hydroxyl groups at all water contents, whilst in natural or synthetic glasses, the amount of molecular water is much larger. A regular solution model with an explicit temperature dependence reproduces well-observed water species. Derivation of the partial molar volume of molecular water using standard thermodynamic considerations yields values close to previous findings if room temperature water species are used. When high temperature species proportions are used, a negative partial molar volume is obtained for molecular water. Calculation of the partial molar volume of total water using H2O solubility data on basaltic melts at pressures above 1 kbar yields a value of 19 cm3/mol in reasonable agreement with estimates obtained from density measurements

    The effect of temperature and bulk composition on the solution mechanism of phosphorus in peraluminous haplogranitic magma.

    No full text
    Solution mechanisms of P in peraluminous glasses and melts in the system CaO-Na2O-K2O-Al2O3- SiO2-P2O5 have been examined with in-situ microRaman spectroscopy from ambient temperature to near 1200 °C. The principal aim was to examine the relative stabilities of phosphate complexes as functions of P content, peraluminosity, and temperature. Increasing peraluminosity was accomplished by increasing the proportions of Al3+ and Ca2+ of constant SiO2 content. The molar ratio Al2O3/ (CaO+Na2O+K2O) (A/CNK) ranged from ~1 to ~1.3. In all compositions, P5+ is bonded to Al3+ to form AlPO4 complexes. In addition, there is evidence for pyrophosphate complexing (P2O7). In melts with the highest (Ca+Na+K)/P, there is probably also a small fraction of orthophosphate complexes present. The relative importance of AlPO4-like complexes is correlated positively with peraluminosity (A/CNK), P2O5 content, and increasing temperature at temperatures above that of the glass transition. These structural relationships among phosphate complexes are coupled with decreasing polymerization of the aluminosilicate melts

    Caractérisation physico-chimique et comportement hydromécanique d'une argile échangée avec l'ammonium dans le contexte des sites de stockage

    No full text
    International audienceEn 2007, près de 38 millions de tonnes de déchets d'origine ménagère ont été collectés par les collectivités en France (ADEME, 2009). Malgré l'essor constant du recyclage et du compostage, 31% de ces déchets municipaux traités ont été envoyé dans des installations de stockage des déchets non dangereux (ISDND) cette même année. A l'échelle européenne, ce pourcentage augmente considérablement. Dans ces sites de stockage, la percolation de l'eau à travers les déchets produit une grande quantité de lixiviats chargés en polluants de diverses natures. L'étanchéité en fond de site est notamment assurée par une couche argileuse (barrière passive). Son rôle est notamment de limiter la pollution des sols et des nappes phréatiques. Les argiles utilisées en fond de site de stockage sont principalement des smectites qui possèdent une forte capacité de rétention. Dans les analyses de lixiviats, de nombreux auteurs ont mis en évidence une très grande quantité d'ammonium susceptible de s'échanger avec le sodium ou le calcium initialement présent la barrière argileuse. Si ces dernières ont largement été décrites dans la littérature, les argiles ammoniées sont beaucoup moins connues. Le travail présenté ici s'est donc intéressé à la caractérisation complète d'une argile totalement échangée avec des cations ammonium. L'objectif de ce travail est de mieux comprendre et appréhender le comportement d'une argile ammoniée dans le contexte de la mise en décharge des déchets. En raison du poids des déchets, la barrière d'argile en fond de site subit des pressions élevées. Le deuxième objectif est de comprendre les phénomènes microscopiques et macroscopiques liées au comportement hydromécanique des matériaux argileux. Des cellules oedométriques équipées d'un système d'injection sous pression contrôlée ont été utilisés. Des différences significatives sur les capacités d'hydratation de l'argile ammoniée et sur la perméabilité de cette dernière ont été mises en évidence au cours de ce travail. L'ensemble des résultats présentés souligne l'importance du suivi des sites de stockage sur le long terme, notamment pour prévenir des pollutions des nappes phréatiques

    NH4-smectite: Characterization, hydration properties and hydro mechanical behaviour

    No full text
    International audienceLeachates in waste landfills are characterized by the presence of ammonium ions in large excess. These ammonium ions can be exchanged with the interlayer cations in clay and modify the physical and chemical properties of clay geochemical barriers in waste landfills and drive to environmental problems. The purpose of this study was to understand the hydro-physical changes of a smectite in the presence of ammonium ions. An ammonium smectite was prepared by cation exchange from a natural montmorillonite (Wyoming). The samples were characterized and their properties were compared by the use of a set of complementary techniques (X-ray diffraction, infrared spectroscopy, N2 adsorption-desorption BET technique, thermal analysis, and percolation experiments). The main effect was a modification of the porosity and its network, and reduced crystalline swelling. These effects changed the hydraulic conductivity and macroscopic swelling of the clay. The oedometer experiments, which allow simulating the pressure on small amounts of samples, proved the strong increase of the permeability of NH4-smectite. This last point is of great importance in an environment point of view and raises questions on the impermeability behaviour on the long term of the clay geochemical barriers with the presence of ammonium ions in waste landfills

    Pb(II) and Zn(II) adsorption onto Na- and Ca-montmorillonites in acetic acid/acetate medium: Experimental approach and geochemical modelling

    Get PDF
    International audienceSmectites are usually used as a clay barrier at the bottom of subsurface waste landfills due to their low permeability and their capacity to retain pollutants. The Na- and Ca-saturated SWy2 montmorillonites were interacted with initial Zn(NO3)2 or Pb(NO3)2 concentrations ranging from 10-6 to 10-2 M with a solid/liquid ratio of 10 g L-1, and using acetic acid/acetate as buffer at pH 5 in order to reproduce a biodegradable leachate of a young landfill. These experiments revealed that Zn and Pb sorption onto Na-SWy2 is higher than onto Ca-SWy2 in the whole range of concentrations. Metal retention into both montmorillonites increases with the decrease in acetic acid/acetate concentration. The two site protolysis model with no electrostatic term (2SPNE model) was used to model these experiments. As the experimental data of Zn sorption were well fitted, this model was validated and has been improved by taking into account the metal-acetate complexation in solution. In order to validate the model for Pb sorption, new selectivity coefficients have been determined, namely log Kc(Pb-Na) = 0.5 for Na-montmorillonite and log Kc(Pb-Ca) = 0.3 for Ca-montmorillonite

    Diamond formation from C60 crystals heated under high pressure

    Get PDF
    X-ray Diffraction (XRD) and Raman Microspectroscopy showed that diamond is detected when solid C60 crystals are heated above 1600°C, in the 9-15 GP range. These samples are here studied by High Resolution Transmission Electron Microscopy (HRTEM) in order to allow the structural characteristics of more or less organised co-existing carbon phases
    corecore